Global Compartmental Pharmacokinetic Models for Spatiotemporal SPECT and PET Imaging

نویسندگان

  • Eric Clarkson
  • Matthew A. Kupinski
چکیده

A new mathematical framework is introduced for combining the linear compartmental models used in pharmacokinetics with the spatiotemporal distributions of activity that are measured in single photon emission computed tomography (SPECT) and PET imaging. This approach is global in the sense that the compartmental differential equations involve only the overall spatially integrated activity in each compartment. The kinetics for the local compartmental activities are not specified by the model and would be determined from data. It is shown that an increase in information about the spatial distribution of the local compartmental activities leads to an increase in the number of identifiable quantities associated with the compartmental matrix. These identifiable quantities, which are important kinetic parameters in applications, are determined by computing the invariants of a symmetry group. This group generates the space of compartmental matrices that are compatible with a given activity distribution, input function, and set of support constraints. An example is provided where all of the compartmental spatial supports have been separated, except that of the vascular compartment. The question of estimating the identifiable parameters from SPECT and PET data is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An introduction to PET and SPECT neuroreceptor quantification models.

PET and SPECT using appropriate radioligands allow imaging of certain critical components of neurotransmission such as presynaptic transporters and postsynaptic receptors in living human brains. PET and SPECT data are commonly analyzed by applying tracer kinetic models. These modeling approaches assume a compartmental system and derive the outcome measure called the binding potential, which ref...

متن کامل

The diagnostic difference between 18F- FDG PET and 99mTc-HMPAO SPECT perfusion imaging in assessment of Alzheimer's disease

Introduction:Brain imaging with F-18 fluorodeoxyglucose (18F-FDG) positron ‎emission tomography or Tc-99m hexamethylpropyleneamine oxime (‎99mTc-HMPAO) SPECT is widely used for the evaluation of Alzheimer's ‎dementia (AD); we aim to assess superiority of one method over the ‎other. Methods: Twenty four patients with clinical diagnosi...

متن کامل

PET vs. SPECT: in the context of ongoing developments

This paper intends to compare the abilities of the two major imaging modalities in nuclear medicine imaging: Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT). The motivations are many-fold: (i) To gain a better understanding of the strengths and limitations of the two imaging modalities in the context of recent and ongoing developments in hardware ...

متن کامل

False-positive FDG PET CT Scan in Vertebral Hemangioma

FDG PET CT scan is considered to be a sensitive tool to detect skeletal metastasis in known malignancies. However, it’s high sensitivity and low specificity may account for false positive diagnosis in cases of trauma, infection, inflammation and other benign conditions. Skeletal hemangioma is one of the common benign conditions which are typically ametabolic on FDG PET CT with no uptake on bone...

متن کامل

Direct comparison of 99mTc-PSMA SPECT/CT and 68Ga-PSMA PET/CT in patients with prostate cancer

Objective(s): 99mTc-PSMA SPECT/CT is a cost effective alternative for 68Ga-PSMA PET/CT. The aim of this study was to directly compare these two techniques in patients with prostate cancer. Methods: 28 man with prostate cancer were studied using 99mTc-PSMA SPECT/CT and 68Ga-PSMA PET/CT in a shor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM journal on imaging sciences

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2009